Stress Considerations in Thin Films for CMOS-Integrated Gas Sensors

نویسندگان

  • Lado Filipovic
  • Siegfried Selberherr
چکیده

The integration of gas sensing elements into hand-held electronics will provide individuals the ability to detect harmful chemicals and pollutants in the environment in real time. Metal oxide gas sensors rely on changes in their electrical conductance due to the interaction of the oxide with a surrounding gas at an elevated temperature. The intrinsic stress in the metal oxide films during the low-temperature, high-pressure, and low oxygen content sputter deposition of tin oxide (SnO2) and indium-tin-oxide (ITO) is examined in this work. The surface free energy for the two films is found to be 1.69J/m and 1.85J/m, respectively, and the intrinsic stress during the early stages of film growth is plotted. The spray pyrolysis deposition technique is implemented to grow a tin oxide film at 400oC, which is able to detect the presence of multiple gases in the environment. Deposition at this temperature leads to a thermo-mechanical stress of 380MPa.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thickness Dependence of Sensitivity in Thin Film Tin Oxide Gas Sensors Deposited by Vapor Pyrolysis

Transparent SnO2 thin films were deposited on porcelain substrates using a chemical vapor deposition technique based on the hydrolysis of SnCl4 at elevated temperatures. A reduced pressure self-contained evaporation chamber was designed for the process where the pyrolysis of SnCl4 at the presence of water vapor was carried out. Resistive gas sensors were fabricated by providing ohmic contacts o...

متن کامل

Performance and Stress Analysis of Metal Oxide Films for CMOS-Integrated Gas Sensors

The integration of gas sensor components into smart phones, tablets and wrist watches will revolutionize the environmental health and safety industry by providing individuals the ability to detect harmful chemicals and pollutants in the environment using always-on hand-held or wearable devices. Metal oxide gas sensors rely on changes in their electrical conductance due to the interaction of the...

متن کامل

DMMP Sensing Performance of Undoped and Al Doped Nanocrystalline ZnO Thin Films Prepared by Ultrasonic Atomization and Pyrolysis Method

Highly textured undoped (pure) and Al doped ZnO nanocrystalline thin films prepared by ultrasonic atomization and pyrolysis method are reported in this paper. ZnCl2 water solution was converted into fine mist by ultrasonic atomizer (Gapusol 9001 RBI Meylan, France). The mist was pyrolyzed on the glass substrates in horizontal quartz reactor placed in furnace. The Structural and microstructural ...

متن کامل

بررسی خواص حسگری لایه‌های اکسید قلع نانوساختار لایه‌نشانی شده به روش‌های تبخیر گرمایی و کَند و پاش نسبت به اتانول

In this paper, manufacturing and evaluation of ethanol gas sensors based on thin films of nanostructure tin oxide have been investigated. SnO2 thin films were prepared by both thermal evaporation (type I) and sputtering (type II) methods and heat treated on silicon wafer substrates. Scanning electron microscope (SEM), atomic force microscope (AFM), X-ray diffraction (XRD) and energy dispersive ...

متن کامل

Analysis of PLC optical sensors integrated with tin oxide thin films

We proposed optical gas sensors based on PLCs integrated with SnO2 thin films. SnO2 thin film was placed on the core layer appeared by removing the upper cladding layer of PLC. The propagation loss is analyzed using 2-D finite-difference time-domain method as a function of refractive index change of SnO2 thin film. The propagation loss of 0.18 dB was observed when the change of refractive index...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015